Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ethyl 2-(2,3,4,5,6-Pentabromophenyl)acetate

Anne M. Sauer, ${ }^{\text {a }}$ Art G. Mack, ${ }^{\text {a }}$ Hassan Y. Elnagar ${ }^{\text {a }}$ and Frank R. Fronczek ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Albemarle Process Development Center, Albemarle Corporation, PO Box 341, Baton Rouge, LA 70821, USA, and ${ }^{\mathbf{b}}$ Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
Correspondence e-mail: ffroncz@lsu.edu

Received 3 June 2010; accepted 29 June 2010
Key indicators: single-crystal X-ray study; $T=90 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA ; R$ factor = $0.025 ; w R$ factor $=0.053$; data-to-parameter ratio $=24.6$.

The title compound PBPEA, $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Br}_{5} \mathrm{O}_{2}$, has its ethyl acetate portion nearly orthogonal to the benzene ring, with a $\mathrm{C}-\mathrm{C}-$ $\mathrm{C}-\mathrm{C}$ torsion angle of $88.3(5)^{\circ}$. The packing involves an intermolecular contact with a $\mathrm{Br} \cdots \mathrm{Br}$ distance of 3.491 (1) A , having $\mathrm{C}-\mathrm{Br} \cdots \mathrm{Br}$ angles of 173.4 (2) and $106.0(2)^{\circ}$. The crystal studied was an inversion twin.

Related literature

For synthetic procedures, see: Holmes \& Lightner (1995); Adams \& Thal (1941). For a description of the Cambridge Structural Database, see: Allen (2002). For related structures, see: Eriksson \& Hu (2002a,b); Eriksson et al. (1999); Köppen et al. (2007); Krigbaum \& Wildman (1971); Mrse et al. (2000); Pedireddi et al. (1994); Williams et al. (1985).

Experimental

Crystal data
 $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Br}_{5} \mathrm{O}_{2}$

$$
M_{r}=558.71
$$

Monoclinic, $C c$
$a=4.6136$ (10) £
$Z=4$
$b=22.548$ (5) \AA
Mo $K \alpha$ radiation
$c=13.195$ (2) \AA
$\beta=90.993(11)^{\circ}$ 。
$V=1372.4(5) \AA^{3}$
$\mu=14.63 \mathrm{~mm}^{-1}$
$T=90 \mathrm{~K}$
$0.25 \times 0.12 \times 0.12 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer with Oxford Cryostream
Absorption correction: multi-scan (SCALEPACK; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.121, T_{\text {max }}=0.273$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.053$
$S=1.17$
3863 reflections
157 parameters
2 restraints

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.65 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.66 \mathrm{e}^{\AA^{-3}}$
Absolute structure: Flack (1983), 1846 Friedel pairs
Flack parameter: 0.467 (13)

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The purchase of the diffractometer was made possible by grant No. LEQSF(1999-2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2038).

References

Adams, R. \& Thal, A. F. (1941). Org. Synth. 1, 270-.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Eriksson, J., Eriksson, L. \& Jakobsson, E. (1999). Acta Cryst. C55, 2169-2171.
Eriksson, L. \& Hu, J. (2002a). Acta Cryst. E58, o794-o796.
Eriksson, L. \& Hu, J. (2002b). Acta Cryst. E58, o1147-o1149.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Holmes, D. L. \& Lightner, D. A. (1995). Tetrahedron, 51, 1607-1622.
Köppen, R., Emmerling, F. \& Becker, R. (2007). Acta Cryst. E63, o585-o586.
Krigbaum, W. R. \& Wildman, G. C. (1971). Acta Cryst. B27, 2353-2358.
Mrse, A. A., Watkins, S. F. \& Fronczek, F. R. (2000). Acta Cryst. C56, e576e577.
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. \& Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353-2360.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Williams, D. R., Gaston, R. D. \& Horton, I. B. (1985). Tetrahedron Lett. 26, 1391-1394.

supplementary materials

Acta Cryst. (2010). E66, o1994 [doi:10.1107/S1600536810025626]

Ethyl 2-(2,3,4,5,6-Pentabromophenyl)acetate

A. M. Sauer, A. G. Mack, H. Y. Elnagar and F. R. Fronczek

Comment

In an effort to prepare a series of proposed pentabromophenyl-substituted compounds necessary as analytical standards, the title ethyl ester derivative rendered itself to be an important intermediate and was synthesized via PBBN as an intermediate. This PBBN nitrile precursor was prepared by known procedures (Holmes \& Lightner, 1995) from hexabromotoluene, henceforth referred to as pentabromobenzyl bromide, PBBB. Subsequent conversion of the resulting pentabromobenzyl nitrile intermediate to PBPEA was completed with ethanol in sulfuric acid. (Adams \& Thal, 1941). The nature of such sterically hindered and electronically deprived pentabromo-compounds has provided a unique opportunity to examine the reactivity and resulting isolation / purification tendencies associated with these systems.

The ethyl acetate portion of the molecule (Fig. 1) is extended, with torsion angles $\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 1174.8$ (3) ${ }^{\circ}$, $\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 1-\mathrm{C} 9179.3(3)^{\circ}, \mathrm{C} 8-\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10-165.1(3)^{\circ}$, and it is nearly orthogonal to the phenyl ring, with $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$ torsion angle $88.3(5)^{\circ}$. The $\mathrm{C} — \mathrm{Br}$ distances are in the range 1.876 (4)-1.896 (4) \AA, with mean value $1.887 \AA$. This value compares favorably with the mean value of $1.880 \AA$ in decabromodiphenylethane (Köppen et al., 2007), the only ordered entry in the CSD (version 5.31, Nov. 2009; Allen 2002) with $\mathrm{Br}_{5} \mathrm{Ph}$ on an $s p^{3} \mathrm{C}$ atom. The structure of pentabromotoluene has also been reported (Krigbaum \& Wildman, 1971), but it has the methyl group statistically disordered, sharing all six sites with Br . Structures of several pentabromophenyl ethers have also been reported (Eriksson \& Hu, 2002a, b; Eriksson et al., 1999; Mrse et al., 2000; Williams et al., 1985), and the geometries of their $\mathrm{Br}_{5} \mathrm{Ph}$ groups are similar.

Packing of compounds containing $\mathrm{Br}_{5} \mathrm{Ph}$ groups usually involves intermolecular $\mathrm{Br} \cdots \mathrm{Br}$ contacts, and one such interaction exists in the structure of the title compound, as illustrated in Fig. 2. The contact is between glide-related molecules, and has $\mathrm{Br} 3 \cdots \mathrm{Br} 5$ distance 3.491 (1) \AA. The angular disposition of the contact is termed type II by Pedireddi et al. (1994), having one $\mathrm{C}-\mathrm{Br} \cdots \mathrm{Br}$ angle near linear and the other nearly orthogonal. In this case, the angle about Br 5 is 173.4 (2) ${ }^{\circ}$, and the angle about Br 3 is $106.0(2)^{\circ}$. Also, both O atoms make intermolecular contacts with $\mathrm{Br}, \mathrm{O} 1 \cdots \mathrm{Br} 4(1+x, 1-y, 1 / 2+z)$ 3.184 (3) \AA; $\mathrm{O} 2 \cdots \operatorname{Br} 2(x-1 / 2,3 / 2-y, 1 / 2+z) 3.123$ (3) \AA.

Experimental

Preparation of PBBN (9263-183):(Fig. 3) To a 3-neck, 100-ml RBF, fitted with a nitrogen inlet, thermocouple and septum, was charged the starting $\operatorname{PBBB}(5 \mathrm{~g}, 8.84 \mathrm{mmol})$ in DMSO $(50 \mathrm{ml})$. To this slurry was added the sodium cyanide $(0.44 \mathrm{~g}, 8.98$ mmol) in one portion at room temperature and the reaction mixture immediately became mint in color. This color quickly dissipated and became brown. The reaction was allowed to heat for one hour, with vigorous stirring, at $80^{\circ} \mathrm{C}$ under an inert atmosphere. Upon conclusion, the contents were filtered hot to remove an insoluble material (1.01 g) and the resulting brown filtrate was treated with water to precipitate the PBBN product. The light brown solids (fluffy) were collected via suction filtration. Drying overnight afforded a dark brown solid. Solids were rinsed with IPA and filtered to provide 2.58 g PBBN material (light brown in color and free flowing) upon drying ($\sim 57 \%$ yield), $\mathrm{mp}=178.6 \& 179.5^{\circ} \mathrm{C}$. Purity of the

supplementary materials

crude PBBN was found to be $\sim 70 \%$ (trimethylbenzene as internal standard) and was used without further purification. The trace unreacted sodium cyanide was destroyed by bleach solution in the aqueous DMSO solution.

Preparation of PBPEA (9263-189): (Fig. 3) To a 3-neck, 100-ml RBF, fitted with a reflux condenser, thermocouple, and nitrogen inlet was charged absolute ethanol (30 g). Concentrated sulfuric acid (30 g) as added slowly as to minimize exotherm. When heating subsided, the starting nitrile, PBBN (1.0 g), was added in one portion. The temperature was set to $\sim 96^{\circ} \mathrm{C}$, and the contents were allowed to reflux for 7 h . After heating for ~ 15 minutes, the reaction turned dark brown in color with no visible evidence of insoluble PBBN. After 2 h . heating, reflux had stabilized. Gradually, the temperature dropped to $\sim 88^{\circ} \mathrm{C}$. The reactor was cooled, and the contents were poured into ice water. Immediately, a grey-brown solid precipitate was formed and subsequently collected via suction filtration. Air-drying overnight provided 1.65 grams crude material. The solids were slurried in acetone and filtered to collect 0.46 grams (42.2% yield) brown solid on drying. Crude NMR revealed desired ethyl ester as the major component. ${ }^{1} \mathrm{H}$ NMR: (400 MHz , DMSO-d6): $\delta=4.32$ (singlet, benzylic $-\mathrm{CH}_{2}-2 \mathrm{H}$), 4.17-4.12 (quartet, ester methylene, 2 H), 1.22-1.19 (triplet, ester methyl, 3 H). (Impurities consist of the acetic acid derivative, along with the amide intermediate.) Recrystallization from acetone / IPA afforded the title ester compound obtained in pure form as spear-like needles, $m p(D S C-m e l t)=142.9-145.8^{\circ} \mathrm{C}$.

Refinement

H atoms on C were placed in idealized positions with $\mathrm{C}-\mathrm{H}$ distances $0.98-0.99 \AA$ and thereafter treated as riding. A torsional parameter was refined for the methyl group. $U_{\text {iso }}$ for H were assigned as 1.2 times $U_{\text {eq }}$ of the attached atoms (1.5 for methyl). The Flack (1983) parameter refined to a value of 0.467 (13), indicating a nearly perfect inversion twin. Friedel pairs were kept separate in the refinement.

Figures

Fig. 1. Ellipsoids at the 50% probability level, with H atoms having arbitrary radius.

Fig. 2. The intermolecular $\mathrm{Br} \cdots \mathrm{Br}$ contact. H atoms are omitted.

Ethyl 2-(2,3,4,5,6-Pentabromophenyl)acetate

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Br}_{5} \mathrm{O}_{2}$
$F(000)=1032$

$M_{r}=558.71$

Monoclinic, $C c$
Hall symbol: C - 2 yc
$a=4.6136(10) \AA$
$b=22.548(5) \AA$
$c=13.195(2) \AA$
$\beta=90.993(11)^{\circ}$
$V=1372.4(5) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD
diffractometer with Oxford Cryostream
Radiation source: fine-focus sealed tube
graphite
ω and φ scans
Absorption correction: multi-scan
(SCALEPACK; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.121, T_{\text {max }}=0.273$
10525 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.053$
$S=1.17$
3863 reflections
157 parameters
2 restraints
Primary atom site location: structure-invariant direct methods
$D_{\mathrm{x}}=2.704 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2027 reflections
$\theta=2.5-30.0^{\circ}$
$\mu=14.63 \mathrm{~mm}^{-1}$
$T=90 \mathrm{~K}$
Needle fragment, light brown
$0.25 \times 0.12 \times 0.12 \mathrm{~mm}$

$$
\begin{aligned}
& 3863 \text { independent reflections } \\
& 3676 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.013 \\
& \theta_{\max }=30.0^{\circ}, \theta_{\min }=3.0^{\circ} \\
& h=-6 \rightarrow 6 \\
& k=-31 \rightarrow 31 \\
& l=-18 \rightarrow 18
\end{aligned}
$$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0154 P)^{2}+2.9894 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\max }=0.65 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.66$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.00100 (7)
Absolute structure: Flack (1983), 1842 Friedel pairs

Secondary atom site location: difference Fourier map Flack parameter: 0.467 (13)

Special details

Experimental. PBBN: ${ }^{1} \mathrm{H}$ NMR: (400MHz, DMSO-d6): $\delta=4.46$ (singlet, benzylic $-\mathrm{CH}_{2}-, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR: (125 MHz , DMSO-d6): δ $=134.06,130.18,129.66,127.90,116.37,31.29$.

PBPEA: ${ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=4.36$ (singlet, benzylic $-\mathrm{CH}_{2}-, 2 \mathrm{H}$), 4.26-4.20 (quartet, ester methylene, 2H), 1.32-1.28 (triplet, ester methyl 2H), 4.26-4.20 (quartet, ester methylene, 2 H), $1.32-1.28$ (triplet, ester methyl, 3 H). ${ }^{13} \mathrm{C}$ NMR: ($100 \mathrm{MHz}, \mathrm{CD}-$ $\left.\mathrm{Cl}_{3}\right): \delta=168.79,137.56,129.37,129.1,128.55,61.98,47.94,14.60$.

supplementary materials

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
Br1	$0.88580(8)$	$0.721320(18)$	$0.44969(3)$	$0.01668(9)$
Br 2	$0.57652(8)$	$0.735821(17)$	$0.22457(3)$	$0.01500(9)$
Br 3	$0.16294(9)$	$0.628526(18)$	$0.13378(3)$	$0.01501(9)$
Br 4	$0.06205(8)$	$0.507432(18)$	$0.26957(3)$	$0.01482(9)$
Br 5	$0.36995(8)$	$0.495585(18)$	$0.49436(3)$	$0.01383(9)$
O1	$0.7331(6)$	$0.61466(13)$	$0.7294(2)$	$0.0136(6)$
O2	$0.3795(6)$	$0.65392(14)$	$0.6300(2)$	$0.0162(6)$
C1	$0.6196(9)$	$0.60801(18)$	$0.4523(3)$	$0.0113(7)$
C2	$0.6548(8)$	$0.65956(18)$	$0.3941(3)$	$0.0115(8)$
C3	$0.5193(9)$	$0.66594(17)$	$0.3000(3)$	$0.0096(7)$
C4	$0.3429(8)$	$0.62048(18)$	$0.2616(3)$	$0.0103(7)$
C5	$0.2983(8)$	$0.56956(18)$	$0.3187(3)$	$0.0110(8)$
C6	$0.4373(8)$	$0.56364(18)$	$0.4137(3)$	$0.0118(8)$
C7	$0.7750(9)$	$0.60088(18)$	$0.5534(3)$	$0.0122(8)$
H7A	0.9647	0.6213	0.5510	0.015^{*}
H7B	0.8118	0.5582	0.5660	0.015^{*}
C8	$0.6017(8)$	$0.62599(17)$	$0.6398(3)$	$0.0101(7)$
C9	$0.5844(9)$	$0.6377(2)$	$0.8175(3)$	$0.0148(8)$
H9A	0.4116	0.6132	0.8316	0.018^{*}
H9B	0.5200	0.6790	0.8046	0.018^{*}
C10	$0.7928(10)$	$0.6360(2)$	$0.9071(3)$	$0.0170(9)$
H10A	0.8614	0.5953	0.9176	0.026^{*}
H10B	0.6938	0.6497	0.9679	0.026^{*}
H10C	0.9583	0.6620	0.8939	0.026^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.0201(2)$	$0.01398(19)$	$0.0157(2)$	$-0.00486(17)$	$-0.00499(16)$	$0.00049(16)$
Br2	$0.0221(2)$	$0.01098(19)$	$0.01185(18)$	$-0.00063(16)$	$-0.00041(15)$	$0.00243(15)$
Br3	$0.0200(2)$	$0.01540(18)$	$0.00946(16)$	$0.00203(16)$	$-0.00374(14)$	$-0.00085(16)$
Br4	$0.01717(19)$	$0.0141(2)$	$0.0131(2)$	$-0.00421(16)$	$-0.00080(16)$	$-0.00249(16)$
Br5	$0.01896(19)$	$0.01114(19)$	$0.0114(2)$	$-0.00113(16)$	$0.00103(16)$	$0.00194(15)$
O1	$0.0148(13)$	$0.0184(15)$	$0.0076(12)$	$0.0050(11)$	$-0.0008(11)$	$-0.0002(11)$
O2	$0.0156(14)$	$0.0184(15)$	$0.0144(13)$	$0.0054(12)$	$-0.0028(11)$	$-0.0036(12)$

sup-4

supplementary materials

C1	$0.0129(17)$	$0.0116(19)$	$0.0095(17)$	$0.0013(14)$	$0.0024(15)$	$0.0005(14)$
C2	$0.0104(18)$	$0.0118(19)$	$0.0125(18)$	$-0.0011(14)$	$0.0040(15)$	$-0.0021(14)$
C3	$0.0133(17)$	$0.0070(18)$	$0.0086(16)$	$0.0010(14)$	$0.0003(14)$	$0.0017(13)$
C4	$0.0103(17)$	$0.0134(19)$	$0.0072(16)$	$0.0023(14)$	$-0.0022(14)$	$-0.0004(14)$
C5	$0.0112(18)$	$0.0114(19)$	$0.0105(18)$	$-0.0019(14)$	$-0.0001(14)$	$-0.0039(14)$
C6	$0.0149(19)$	$0.0101(19)$	$0.0106(18)$	$0.0026(15)$	$0.0040(15)$	$0.0014(14)$
C7	$0.0127(18)$	$0.0109(18)$	$0.0129(19)$	$-0.0013(14)$	$-0.0018(15)$	$0.0000(15)$
C8	$0.0121(18)$	$0.0098(17)$	$0.0081(16)$	$-0.0021(14)$	$-0.0031(14)$	$-0.0023(14)$
C9	$0.015(2)$	$0.019(2)$	$0.0101(18)$	$0.0031(16)$	$-0.0008(15)$	$-0.0034(16)$
C10	$0.016(2)$	$0.022(2)$	$0.0139(19)$	$0.0032(17)$	$-0.0003(16)$	$-0.0005(16)$

Geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$)

$\mathrm{Br} 1-\mathrm{C} 2$	$1.894(4)$
$\mathrm{Br} 2-\mathrm{C} 3$	$1.885(4)$
$\mathrm{Br} 3-\mathrm{C} 4$	$1.876(4)$
$\mathrm{Br} 4-\mathrm{C} 5$	$1.883(4)$
$\mathrm{Br} 5-\mathrm{C} 6$	$1.896(4)$
$\mathrm{O} 1-\mathrm{C} 8$	$1.344(5)$
$\mathrm{O} 1-\mathrm{C} 9$	$1.456(5)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.208(5)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.397(6)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.404(5)$
$\mathrm{C} 1-\mathrm{C} 7$	$1.512(5)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.388(6)$
$\mathrm{C} 8-\mathrm{O} 1-\mathrm{C} 9$	$115.0(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$117.9(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7$	$121.2(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	$120.9(4)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$121.4(4)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Br} 1$	$120.8(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 1$	$117.8(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$119.9(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 2$	$119.6(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Br} 2$	$120.5(3)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$120.0(3)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{Br} 3$	$120.0(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br} 3$	$120.0(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$119.5(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{Br} 4$	$121.2(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{Br} 4$	$119.3(3)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$121.3(4)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{Br} 5$	$118.6(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{Br} 5$	$120.1(3)$
$\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	$112.1(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-1.6(6)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$178.3(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 1$	(5)
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 1$	

C3-C4	1.398 (6)
C4-C5	1.391 (6)
C5-C6	1.404 (5)
C7-C8	1.514 (5)
C7-H7A	0.9900
C7-H7B	0.9900
C9-C10	1.511 (6)
C9-H9A	0.9900
C9-H9B	0.9900
C10-H10A	0.9800
C10-H10B	0.9800
C10-H10C	0.9800
C1-C7-H7A	109.2
C8-C7-H7A	109.2
C1-C7-H7B	109.2
C8-C7-H7B	109.2
H7A-C7-H7B	107.9
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{O} 1$	124.2 (4)
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 7$	124.9 (4)
O1-C8-C7	110.8 (3)
O1-C9-C10	108.3 (3)
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{H9A}$	110.0
C10-C9-H9A	110.0
O1-C9-H9B	110.0
C10-C9-H9B	110.0
H9A-C9-H9B	108.4
C9-C10-H10A	109.5
C9-C10-H10B	109.5
H10A-C10-H10B	109.5
C9-C10-H10C	109.5
H10A-C10-H10C	109.5
H10B-C10-H10C	109.5
C2- $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	1.5 (6)
C7- $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	-178.5 (4)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{Br} 5$	-176.6 (3)
C7-C1-C6-Br5	3.5 (5)

supplementary materials

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.2(6)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.1(6)$
$\mathrm{Br} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-178.1(3)$	$\mathrm{Br} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$178.6(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 2$	$-179.5(3)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{Br} 5$	$178.1(3)$
$\mathrm{Br}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 2$	$2.2(5)$	$\mathrm{Br} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{Br} 5$	$-3.4(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$1.5(6)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	$-91.8(5)$
$\mathrm{Br} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-178.9(3)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	$88.3(5)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br} 3$	$-179.3(3)$	$\mathrm{C} 9-\mathrm{O} 1-\mathrm{C} 8-\mathrm{O} 2$	$1.2(6)$
$\mathrm{Br} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br} 3$	$0.4(5)$	$\mathrm{C} 9-\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 7$	$179.3(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-1.6(6)$	$\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 2$	$-7.1(6)$
$\mathrm{Br} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 1$	$174.8(3)$	
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Br} 4$	$\mathrm{C} 8-\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10$	$-165.1(3)$	
$\mathrm{Br} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Br} 4$			

Fig. 1

supplementary materials

Fig. 2

supplementary materials

Fig. 3

